A.固定性
B.創(chuàng)造性
C.生動性
D.活動性
您可能感興趣的試卷
你可能感興趣的試題
A.算法是算理的具體化
B.算法以算理為理論依據(jù)
C.算法即計算方法,具有多樣性的特點
D.算理與算法是相互獨立的兩個部分
A.生活概念是小學(xué)生學(xué)習(xí)數(shù)學(xué)概念的起點
B.教學(xué)與學(xué)生生活相聯(lián)系有助于教學(xué)的有效展開
C.生活概念是小學(xué)生頭腦中最親切最牢固的部分,而且和數(shù)學(xué)概念一樣嚴(yán)密
D.小學(xué)生以形象思維為主,而數(shù)學(xué)概念具有較強的抽象性,因此借助生活概念來過渡是非??尚械?/p>
A.同化
B.順化
C.平衡
D.正遷移
A.數(shù)學(xué)應(yīng)用題的背景是純化或簡化的,而實際問題的背景要兼顧的情況比較多
B.數(shù)學(xué)應(yīng)用題的條件已預(yù)先給定,而實際問題的條件則要解題者去分析,去尋找
C.數(shù)學(xué)應(yīng)用題的結(jié)果是惟一的,而實際問題卻往往有多種結(jié)果
D.數(shù)學(xué)應(yīng)用題一般是以實際問題為原型的
A.聯(lián)系生活實際設(shè)計恰當(dāng)?shù)臄?shù)學(xué)教學(xué)
B.應(yīng)用數(shù)學(xué)知識解決實際問題
C.采用數(shù)學(xué)教學(xué)游戲的方式
D.采用填鴨式的教學(xué)方法
最新試題
有些小學(xué)兒童能夠熟練背誦乘法口訣表,但是不知道其實際意義,這種學(xué)習(xí)屬于()。
數(shù)學(xué)的發(fā)生、發(fā)展歸根結(jié)底是()決定的。
小學(xué)兒童已能掌握一些抽象的數(shù)學(xué)概念,但還需要直觀材料或表象作為自己認(rèn)識的支柱,這說明小學(xué)生的數(shù)學(xué)學(xué)習(xí)是()。
小學(xué)數(shù)學(xué)教材應(yīng)以()為主線。
根據(jù)皮亞杰發(fā)生認(rèn)識論的基本觀點,在小學(xué)數(shù)學(xué)學(xué)習(xí)中應(yīng)注意()。
學(xué)生在教師的指導(dǎo)下通過實驗操作獲得“一個圓錐體的體積等于等底等高的圓柱體體積的1/3”這一結(jié)論,這是屬于()。
判定一個主體是否進(jìn)行了學(xué)習(xí),應(yīng)依據(jù)()。
小學(xué)數(shù)學(xué)教材的編排為什么要把基本概念、基本規(guī)律、基本方法置于中心地位?
在解答應(yīng)用題時,為更快地填補條件與目標(biāo)之間的空隙,可以采用()方法或手段。
小學(xué)數(shù)學(xué)中的基本計算是指()。