最新試題

設隨機變量的概率密度為,求E(X)和D(X)。

題型:問答題

若按總分從高到低錄取,試分析一總分為237分的考生被錄取為正式工的可能性。

題型:問答題

求矩陣的逆矩陣。

題型:問答題

為確保設備正常運轉(zhuǎn),需要配備適當數(shù)量的維修工人,現(xiàn)有同類型設備100臺,各臺工作相互獨立,每臺發(fā)生故障的概率都是0.01,在正常情況下,一臺設備出故障時一人即能處理,問至少應有幾名維修工人,才能以99%的把握保證設備出故障時不致因維修工人不足不能及時處理故障而影響生產(chǎn)?

題型:問答題

某市一次全.市初三英語會考的考試成績可以用正態(tài)分布來描述,其平均成績?yōu)棣?70(分),標準差為σ=9(分)。一考生考得75分,求其超前百分位數(shù)。

題型:問答題

設隨機變量ξ的分布密度為p(x)=ce-x,-∞<x<+∞,求常數(shù)c,E(ξ),D(ξ)和P(-1<ξ<1)。

題型:問答題

設燈泡使用時數(shù)X~N(μ,σ2),為了估計期望μ和方差σ2,共測試了10個燈泡,求得x=1500h,s=20h,求μ和σ置信度為0.95的置信區(qū)間。

題型:問答題

取自某校畢業(yè)生的一個100人的簡單隨機樣本,有48人年收入不少于3萬元,估計該校畢業(yè)生中年收入不少于3萬元的所有畢業(yè)生的百分比。

題型:問答題

某車間有200臺機床獨立工作,每臺機床在工作時間內(nèi)有70%的時間開動,每臺機床工作時需耗電1kw,問應供應多少電力才能有99.9%的把握保證該車間正常生產(chǎn)。

題型:問答題

預測最低錄取分數(shù)線。

題型:問答題