問(wèn)答題
設(shè)A為n階可逆矩陣,λ為A的一個(gè)特征值。證明:
λ≠0。您可能感興趣的試卷
最新試題
A、B、C為n階矩陣,E為單位矩陣,滿(mǎn)足ABC=E,則下列成立的是()
題型:?jiǎn)雾?xiàng)選擇題
設(shè)A=,B=,C=,求解矩陣方程(A+2E)X=C。
題型:?jiǎn)柎痤}
二次型f(x1,x2,x3)=x12-2x22-2x32-4x1x2+4x1x3+8x2x3的秩為()
題型:?jiǎn)雾?xiàng)選擇題
若A和B是同階相似方陣,則A和B具有相同的特征值。()
題型:判斷題
若α1,α2,β線(xiàn)性無(wú)關(guān),以下結(jié)論正確的是()
題型:?jiǎn)雾?xiàng)選擇題
已知向量組α1=(1,1,1),α2=(2,2,2),α3=(3,3,3),α4=(0,0,1),α5=(1,2,3)。(1)求該向量組的秩;(2)求該向量組的一個(gè)極大線(xiàn)性無(wú)關(guān)組。
題型:?jiǎn)柎痤}
設(shè)A為四階方陣,且滿(mǎn)足秩r(A)+秩r(A·E)=4,則A2=()。
題型:填空題
設(shè)A為3階實(shí)對(duì)稱(chēng)矩陣,向量ξ1=(1,2,5)T,ξ2=(k,2k,3)T分別對(duì)應(yīng)于特征值2和3的特征向量,則k=()。
題型:填空題
設(shè)α1,α2,…,αs∈Rn,該向量組的秩為r,則對(duì)于s和r,當(dāng)()時(shí)向量組線(xiàn)性無(wú)關(guān);當(dāng)()時(shí)向量組線(xiàn)性相關(guān)。
題型:填空題
設(shè)A為3階矩陣,丨A丨=1/2,求丨A*丨=()
題型:?jiǎn)雾?xiàng)選擇題