設(shè),問k為何值時(shí),函數(shù)f(x)在其定義域內(nèi)連續(xù)?
您可能感興趣的試卷
你可能感興趣的試題
利用連續(xù)函數(shù)極限的法則求極限。
利用連續(xù)函數(shù)極限的法則求極限。
利用連續(xù)函數(shù)極限的法則求極限。
利用連續(xù)函數(shù)極限的法則求極限。
最新試題
預(yù)測(cè)最低錄取分?jǐn)?shù)線。
甲乙兩人五門課程的測(cè)驗(yàn)成績(jī)(每門課程滿分均為100分)為又經(jīng)統(tǒng)計(jì),該年級(jí)五門課程這次測(cè)驗(yàn)的平均分?jǐn)?shù)分別為70分、85分、65分、75分、68分,標(biāo)準(zhǔn)差分別為9分、6分、11分、8分、10分,試運(yùn)用標(biāo)準(zhǔn)分?jǐn)?shù)來比較甲乙這次測(cè)驗(yàn)總分的前后順序。
設(shè)隨機(jī)變量ξ的分布密度為p(x)=ce-x,-∞<x<+∞,求常數(shù)c,E(ξ),D(ξ)和P(-1<ξ<1)。
已知,求A+B,A-B,2A-B,AC,CA,ACB,AB′。
某學(xué)校600名學(xué)生參加計(jì)算機(jī)應(yīng)用課程考試的成績(jī)近似地服從N(75,82)試估計(jì)成績(jī)?cè)赱90,100],[70,80),[0,60)分?jǐn)?shù)段內(nèi)的人數(shù)。
為確保設(shè)備正常運(yùn)轉(zhuǎn),需要配備適當(dāng)數(shù)量的維修工人,現(xiàn)有同類型設(shè)備100臺(tái),各臺(tái)工作相互獨(dú)立,每臺(tái)發(fā)生故障的概率都是0.01,在正常情況下,一臺(tái)設(shè)備出故障時(shí)一人即能處理,問至少應(yīng)有幾名維修工人,才能以99%的把握保證設(shè)備出故障時(shí)不致因維修工人不足不能及時(shí)處理故障而影響生產(chǎn)?
某尋呼臺(tái)在1分鐘內(nèi)接到的呼喚次數(shù)服從參數(shù)λ=5的泊松分布,求在1分鐘內(nèi)接到6次呼喚的概率及接到呼喚不超過10次的概率。
某中學(xué)的初一年級(jí)有500名學(xué)生,他們的某種能力指標(biāo)可以用正態(tài)分布來描述,現(xiàn)在按能力將他們分成A,B,C,D四個(gè)組參加一項(xiàng)測(cè)試,求各組的人數(shù)。
某年級(jí)進(jìn)行英語和計(jì)算機(jī)應(yīng)用兩門課程的測(cè)驗(yàn),經(jīng)統(tǒng)計(jì),英語的平均分?jǐn)?shù)為80分,標(biāo)準(zhǔn)差為6分;計(jì)算機(jī)應(yīng)用的平均分?jǐn)?shù)為70分,標(biāo)準(zhǔn)差為9分。某學(xué)生英語考得85分,計(jì)算機(jī)應(yīng)用考得80分,試問該生哪門課程成績(jī)?cè)谌昙?jí)相對(duì)較好?
根據(jù)長(zhǎng)期資料的分析,知道某種鋼筋的強(qiáng)度服從正態(tài)分布,今隨機(jī)抽取6根鋼筋進(jìn)行強(qiáng)度試驗(yàn),測(cè)得強(qiáng)度(單位Mpa)為48.5,49,53.5,49.5,56.0,52.5。問:能否認(rèn)為該種鋼筋的平均強(qiáng)度為52.0Mpa?(α=0.052)