您可能感興趣的試卷
最新試題
Schr?dinger求解氫原子的定態(tài)Schr?dinger方程,得到了Bohr能級(jí)公式,他認(rèn)為量子化的本質(zhì)是微分方程的()問題。
?Bohm提出了簡(jiǎn)化版的量子態(tài)糾纏態(tài),即兩個(gè)自旋為()原子的糾纏態(tài)。
效仿Einstein的做法,Born把波函數(shù)也視為向?qū)?chǎng),該場(chǎng)決定了粒子在某一向?qū)窂降模ǎ?,向?qū)?chǎng)本身沒有能量和動(dòng)量。
一維諧振子基態(tài)波函數(shù)為,式中,則諧振子在該態(tài)時(shí)勢(shì)能的平均值為()。
設(shè)電子處于動(dòng)量為的態(tài),將哈密頓量中的作為微擾,寫出能量本征值和本征函數(shù)到一級(jí)近似。
?經(jīng)典儀器測(cè)量系統(tǒng)時(shí)會(huì)()得到系統(tǒng)的某個(gè)本征值,同時(shí)系統(tǒng)波函數(shù)也坍縮到系統(tǒng)相應(yīng)的這個(gè)本征態(tài)。
?Bohr從定態(tài)假說和躍遷假說出發(fā),使用了()原理建立完整的氫原子理論。
Einstein對(duì)比了短波低能量密度時(shí)的黑體輻射和n個(gè)原子組成的粒子體系的(),提出了光量子假設(shè)。
?Heisenberg用他的量子化條件研究一維簡(jiǎn)諧振動(dòng),得到一維諧振子的動(dòng)能和勢(shì)能之和只是量子數(shù)n的函數(shù),這說明處于定態(tài)n的諧振子的總能量()。
?粒子的波函數(shù)為,則t時(shí)刻粒子出現(xiàn)在空間的概率為()。