考慮一個沿x方向運動的一維電子,其運動存在自旋軌道耦合,哈密頓量可寫成
其中α、Ω為常量。
當α≠0,Ω≠0時,寫出能量本征值和相應(yīng)的本征態(tài)。您可能感興趣的試卷
你可能感興趣的試題
A.eiEt/h
B.
C.
D.e-iEt/h
一維諧振子基態(tài)波函數(shù)為,式中,則諧振子在該態(tài)時勢能的平均值為()。
A.
B.
C.
D.
A.(Wmm-Wnn)omn
B.(Wmm-Wnn)onm
C.(Wnn-Wmm)onm
D.(Wnn-Wmm)omn
一維運動的粒子被束縛在0<x<a的范圍內(nèi),其波函數(shù)為,則粒子在0到a/2區(qū)域內(nèi)出現(xiàn)的概率為()。
A.1/2
B.1/4
C.1/8
D.1/6
最新試題
多世界解釋認為人們測量時系統(tǒng)的波函數(shù)沒有坍縮,但觀測的一瞬間宇宙分裂為多個宇宙,不同宇宙中的同一個觀察者()進行交流和通信。
由原子激發(fā)態(tài)平均壽命估算該激發(fā)態(tài)能級的寬度時,需要使用Heisenberg()不確定關(guān)系。
?Bohr從定態(tài)假說和躍遷假說出發(fā),使用了()原理建立完整的氫原子理論。
效仿Einstein的做法,Born把波函數(shù)也視為向?qū)?,該場決定了粒子在某一向?qū)窂降模ǎ驅(qū)霰旧頉]有能量和動量。
光量子的本質(zhì)是()電磁場。
Schr?dinger求解氫原子的定態(tài)Schr?dinger方程,得到了Bohr能級公式,他認為量子化的本質(zhì)是微分方程的()問題。
?Bohm提出了簡化版的量子態(tài)糾纏態(tài),即兩個自旋為()原子的糾纏態(tài)。
?由de Broglie關(guān)系和()方程也能導(dǎo)出定態(tài)Schr?dinger方程。
Dirac發(fā)現(xiàn)兩個物理量的對易子xy-yx等于()乘以這兩個物理量的經(jīng)典泊松括號{x,y}。
?Heisenberg用他的量子化條件研究一維簡諧振動,得到一維諧振子的動能和勢能之和只是量子數(shù)n的函數(shù),這說明處于定態(tài)n的諧振子的總能量()。