填空題
矩陣,要使,則常數(shù)a應(yīng)當滿足()。
您可能感興趣的試卷
最新試題
試以冪法求出如下矩陣的對應(yīng)于特征值λ=4的特征向量:;取初始向量;
題型:問答題
寫出求解常微分方程初值問題,y(0)=0,0≤x≤2的顯示和隱式二階Adams格式;取步長h=0.2,y(0.2)=0.181,手工計算到x=1.0。
題型:問答題
寫出求解常微分方程初值問題,y(0)=1,0≤x≤4的Euler格式;取步長h=0.2,手工計算到x=0.2。
題型:問答題
寫出求解常微分方程初值問題,y(0)=1,0≤x≤1的Euler格式和改進Euler格式;取步長h=0.02,計算到x=0.1,其精確解析為y(x)=(1+2*x)-0.45,試與精確值比較。
題型:問答題
寫出求解常微分方程初值問題,y(0)=0,0≤x≤4的Euler格式;取步長h=0.1,手工計算到x=0.1,精確解為。
題型:問答題
寫出求解常微分方程初值問題,y(0)=1,0≤x≤0.5,首先利用經(jīng)典四階Runge-Kutta格式,計算出3個啟動值:y(0.1)=0.833;y(0.2)=0.723;y(0.3)=0.660;再應(yīng)用四步四階Adams格式取步長h=0.1,手工計算到x=0.5
題型:問答題
寫出求解常微分方程初值問題,y(0)=0的Euler格式;精確解為。
題型:問答題
寫出求解常微分方程初值問題的Euler格式和改進Euler格式;取步長h=0.1,手工計算到x=1,精確解為。
題型:問答題
寫出求解常微分方程初值問題,y(0)=1,0≤x≤2的經(jīng)典四階Runge-Kutta格式;取步長h=0.1,手工計算到x=0.2,精確解為y=x+e-x。
題型:問答題
是A的相應(yīng)λi的特征向量,是A的相應(yīng)λj的特征向量。
題型:問答題