判斷題假設(shè)屬性的數(shù)量固定,則可以在時(shí)間上以線性方式學(xué)習(xí)基于高斯的貝葉斯最優(yōu)分類(lèi)器,而該數(shù)量是數(shù)據(jù)集中記錄的數(shù)量。
您可能感興趣的試卷
你可能感興趣的試題
最新試題
要將工作申請(qǐng)分為兩類(lèi),并使用密度估計(jì)來(lái)檢測(cè)離職申請(qǐng)人,我們可以使用生成分類(lèi)器。
題型:判斷題
給定用于2類(lèi)分類(lèi)問(wèn)題的線性可分離數(shù)據(jù)集,線性SVM優(yōu)于感知器,因?yàn)镾VM通常能夠在訓(xùn)練集上實(shí)現(xiàn)更好的分類(lèi)精度。
題型:判斷題
隨機(jī)梯度下降每次更新執(zhí)行的計(jì)算量少于批梯度下降。
題型:判斷題
訓(xùn)練神經(jīng)網(wǎng)絡(luò)具有過(guò)度擬合訓(xùn)練數(shù)據(jù)的潛在問(wèn)題。
題型:判斷題
使決策樹(shù)更深將確保更好的擬合度,但會(huì)降低魯棒性。
題型:判斷題
通常,當(dāng)試圖從大量觀察中學(xué)習(xí)具有少量狀態(tài)的HMM時(shí),我們幾乎總是可以通過(guò)允許更多隱藏狀態(tài)來(lái)增加訓(xùn)練數(shù)據(jù)的可能性。
題型:判斷題
最大似然估計(jì)的一個(gè)缺點(diǎn)是,在某些情況下(例如,多項(xiàng)式分布),它可能會(huì)返回零的概率估計(jì)。
題型:判斷題
數(shù)據(jù)收集中的拉模式需要通過(guò)定時(shí)的方式不斷地觸發(fā),才能源源不斷地獲取對(duì)應(yīng)的數(shù)據(jù)。
題型:判斷題
數(shù)據(jù)壓縮與解壓縮可以使得數(shù)據(jù)處理的速度加快。
題型:判斷題
當(dāng)MAP中使用的先驗(yàn)是參數(shù)空間上的統(tǒng)一先驗(yàn)時(shí),MAP估計(jì)等于ML估計(jì)。
題型:判斷題