A.STING
B.WaveCluster
C.MAFIA
D.BIRCH
您可能感興趣的試卷
你可能感興趣的試題
A.當(dāng)簇只包含少量數(shù)據(jù)點,或者數(shù)據(jù)點近似協(xié)線性時,混合模型也能很好地處理
B.混合模型比K均值或模糊c均值更一般,因為它可以使用各種類型的分布
C.混合模型很難發(fā)現(xiàn)不同大小和橢球形狀的簇
D.混合模型在有噪聲和離群點時不會存在問題
A.模糊c均值
B.EM算法
C.SOM
D.CLIQUE
A.CURE
B.DENCLUE
C.CLIQUE
D.OPOSSUM
A.平方歐幾里德距離
B.余弦距離
C.直接相似度
D.共享最近鄰
以下是哪一個聚類算法的算法流程()。
①構(gòu)造k-最近鄰圖。
②使用多層圖劃分算法劃分圖。
③repeat:合并關(guān)于相對互連性和相對接近性而言,最好地保持簇的自相似性的簇。
④until:不再有可以合并的簇。
A.MST
B.OPOSSUM
C.Chameleon
D.Jarvis-Patrick(JP)
最新試題
數(shù)據(jù)存儲體系中并不牽扯計算機(jī)網(wǎng)絡(luò)這一環(huán)節(jié)。
數(shù)據(jù)索引是保證數(shù)據(jù)處理高性能的軟件角度的一種手段,不做數(shù)據(jù)索引的數(shù)據(jù)訪問是線性訪問,但是做了索引的數(shù)據(jù)訪問會成倍的降低訪問時間。
經(jīng)常跟管理層打交道并進(jìn)行有效地關(guān)于商業(yè)領(lǐng)域的討論有助于數(shù)據(jù)科學(xué)項目的成功。
對于文本數(shù)據(jù)和多媒體數(shù)據(jù)進(jìn)行特征提取是為了方便對于這類數(shù)據(jù)的觀察和理解。
使用偏差較小的模型總是比偏差較大的模型更好。
管理員不需要驗證就可以訪問數(shù)據(jù)存儲系統(tǒng)中的任何數(shù)據(jù),這符合數(shù)據(jù)安全的要求。
隨機(jī)梯度下降每次更新執(zhí)行的計算量少于批梯度下降。
無論質(zhì)心的初始化如何,K-Means始終會給出相同的結(jié)果。
完整性,一致性,時效性,唯一性,有效性,準(zhǔn)確性是衡量數(shù)據(jù)質(zhì)量的六個維度指標(biāo)。
如果P(A B)= P(A),則P(A∩B)= P(A)P(B)。